
Systemic sclerosis is an autoimmune disease that is 
characterized by the distinctive pathogenetic triad of 
microvascular damage, dysregulation of innate and 
adaptive immunity, and generalized fibrosis in multi-
ple organs. Although skin fibrosis is the distinguishing 
hallmark, the pathological changes in the lungs, gastro-
intestinal tract, kidneys and heart determine the clini-
cal outcome. In general, the extent of skin involvement 
and its rate of progression reflect the severity of visceral 
organ complications1,2.

A striking feature of systemic sclerosis is its patient-
to-patient variability, and heterogeneity has been 
observed in clinical manifestations, autoantibody pro-
files, tempo of disease progression, response to treat-
ment and survival (TABLE 1). On the basis of the extent 
of their skin involvement, patients are grouped into 
limited cutaneous systemic sclerosis (lcSSc) and diffuse 
cutaneous systemic sclerosis (dcSSc) subsets3. In lcSSc, 
skin fibrosis is restricted to the fingers (sclerodactyly), 
distal extremities and face, whereas in dcSSc, the trunk 
and proximal extremities are also affected. In patients 
with lcSSc, Raynaud phenomenon (BOX 1) typically pre-
cedes skin involvement and other disease manifesta-
tions by months to years, whereas patients with dcSSc 
have rapid disease progression with extensive skin 
changes and early development of visceral organ com-
plications. Autoantibodies are particularly helpful in 

systemic sclerosis for both diagnosis and classification. 
lcSSc is commonly associated with centromere-specific 
antibodies, whereas dcSSc is more often associated 
with topoisomerase I- or RNA polymerase III-specific 
antibodies4. However, not all patients with systemic 
sclerosis fall clearly into one of these two disease sub-
sets, and some can change their subset assignment 
over time. Furthermore, some individuals present with 
hallmark clinical and serological features of systemic 
sclerosis in the absence of detectable skin involvement 
(systemic sclerosis sine scleroderma); others manifest 
features of another connective tissue disease, such as 
rheumatoid arthritis or polymyositis, in overlap with 
systemic sclerosis (overlap syndrome).

In 2013, revised classification criteria — the 
American College of Rheumatology (ACR)–European 
League Against Rheumatism (EULAR) criteria — were 
proposed to address some of the difficulties in classi-
fication5,6. However, none of the currently used classifi-
cation schemes adequately captures disease complexity 
and hetero geneity in systemic sclerosis, suggesting that 
a clinically useful, new taxonomy based on genetic or 
molecular disease determinants needs to be developed 
and implemented in future clinical practice and trials.

In this Primer, we describe the epidemiology and 
genetic risks of systemic sclerosis, current views of 
pathogenesis, and approaches to screening, diagnosis and 
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Abstract | Systemic sclerosis is a complex autoimmune disease characterized by a chronic and frequently 
progressive course and by extensive patient-to-patient variability. Like other autoimmune diseases, 
systemic sclerosis occurs more frequently in women, with a peak of onset in the fifth decade of life. The 
exact cause of systemic sclerosis remains elusive but is likely to involve environmental factors in a 
genetically primed individual. Pathogenesis is dominated by vascular changes; evidence of autoimmunity 
with distinct autoantibodies and activation of both innate and adaptive immunity; and fibrosis of the skin 
and visceral organs that results in irreversible scarring and organ failure. Intractable progression of 
vascular and fibrotic organ damage accounts for the chronic morbidity and high mortality. Early and 
accurate diagnosis and classification might improve patient outcomes. Screening strategies facilitate 
timely recognition of life-threatening complications and initiation of targeted therapies to halt their 
progression. Effective treatments of organ-based complications are now within reach. Discovery of 
biomarkers — including autoantibodies that identify patient subsets at high risk for particular disease 
complications or rapid progression — is a research priority. Understanding the key pathogenetic 
pathways, cell types and mediators underlying disease manifestations opens the door for the development 
of targeted therapies with true disease-modifying potential. For an illustrated summary of this Primer, 
visit: http://go.nature.com/lchkcA
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prevention of organ complications. We end by presenting 
an outlook for the future.

Epidemiology
Prevalence and incidence estimates of systemic scle-
rosis around the world vary substantially. Lower esti-
mates of prevalence (<150 per million) and incidence 
(<10 per million per year) have been observed in north-
ern Europe and Japan, whereas higher estimates of 
prevalence (276–443 per million) and incidence (14–21 
per million per year) have been reported in southern 
Europe, North America and Australia7. The 2013 ACR–
EULAR classification criteria are more sensitive than 
the criteria published in the 1980s because they include 
patients who are positive for centromere-specific anti-
bodies and who have limited cutaneous involvement8. 
As a consequence, the estimated prevalence of systemic 
sclerosis based on the ACR–EULAR classification cri-
teria (for example, 88 per million in men, 514 per mil-
lion in women and overall 305 per million in Sweden) 
was much higher than previously published estimates7,8.

The development of systemic sclerosis is sex depend-
ent and, as is true for all connective tissue diseases, is 
much more common in women (FIG. 1). However, the 
EULAR Scleroderma Trials and Research (EUSTAR) 
cohort (see the EUSTAR website) has revealed some 
unusual features in men9. In a cross-sectional study of 
9,182 patients with systemic sclerosis, including 1,321 
men, male sex was independently associated with 
a higher risk of dcSSc (odds ratio (OR) 1.68; 95% CI 
1.45–1.94; P < 0.001), a higher frequency of digital ulcers 
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(OR 1.28; 95% CI 1.11–1.47; P < 0.001) and pulmonary 
arteri al hypertension (PAH; OR 3.01; 95% CI 1.47–6.20; 
P < 0.003). In a longitudinal study (mean follow-up 
4.9 ± 2.7 years), male sex was predictive of new onset 
of PAH (hazard ratio (HR) 2.70; 95% CI 1.38–5.29; 
P = 0.004), heart failure (HR 2.15; 95% CI 1.03–4.48; 
P = 0.04) and all-cause mortality (HR 1.48; 95% CI 1.19–
1.84; P < 0.001). Male sex has been consistently shown to 
be a poor prognostic factor in systemic sclerosis.

As in other connective tissue disorders such as sys-
temic lupus erythematosus, ethnicity has a role in  
systemic sclerosis. A large US study10 showed that Afri-
can American patients presented at a younger mean age 
than white patients (47 years versus 53 years; P <0.001). 
Furthermore, two-thirds of white patients exhibited 
lcSSc, whereas the majority of black patients had dcSSc 
(P < 0.001). The race differential was mirrored by the find-
ing that African Americans with systemic sclerosis were 
more likely to have antibodies against topo isomerase I 
and less likely to be positive for centromere-specific anti-
bodies. In addition, African American patients experi-
enced an increase in risk of mortality (relative risk (RR) 
1.8; 95% CI 1.4–2.2) after adjustment for age at disease 
onset and disease duration. Thus, race is related to a dis-
tinct phenotypic profile, and there is a trend towards less 
favourable outcomes in African American patients.

The overlap between systemic sclerosis and other 
connective tissue disorders has been recognized for 
some time. The links between connective tissue diseases 
are further supported by the results from genome-wide 
association studies (GWASs) that highlight the criti-
cal role of shared autoimmunity. The co-occurrence of 
another autoimmune disease with systemic sclerosis 
was investigated in a meta-analysis of 6,102 patients 
with systemic sclerosis obtained from 10 studies11. Of 
these patients, 1,432 had one or more additional auto-
immune disease corresponding to a weighted prevalence 
of poly-autoimmunity of 26% (95% CI 20–32%). Thus, 
these results confirm that poly-autoimmunity is fre-
quent in systemic sclerosis, affecting 25% of patients. It 
remains to be determined how this finding might affect 

Table 1 | Clinical subsets in systemic sclerosis

Clinical subset Clinical manifestations Primary targets of autoantibodies Disease course

Limited cutaneous 
systemic sclerosis

• Distal skin fibrosis, sclerodactyly, 
telangiectasia and calcinosis cutis 
may be prominent

• Severe interstitial lung disease and 
scleroderma renal crisis are very rare

Centromere proteins • Raynaud phenomenon may precede 
other manifestations

• Slow progression with late 
development of PAH

Diffuse cutaneous 
systemic sclerosis

• Proximal skin fibrosis up to elbows 
and knees, including trunk

• Tendon friction rubs may be present

Topoisomerase I  and RNA 
polymerase III

• Rapidly progressive skin fibrosis

• Early occurrence of renal, cardiac and 
pulmonary complications

Systemic sclerosis  
sine scleroderma

No detectable skin involvement Nuclear and centromere proteins Raynaud phenomenon, nailfold capillary 
abnormalities and PAH

Overlap syndrome Features of another connective  
tissue disease in the setting of 
systemic sclerosis

U1 RNP, PM–Scl, Ro and La • Prominent musculoskeletal 
involvement

• Lung fibrosis and scleroderma renal 
crisis are uncommon

PAH, pulmonary arterial hypertension; RNP, ribonucleoprotein.
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the outcomes and how it could be used to guide the 
choice of treatments and also the positioning of potential 
biologic agents.

Mechanisms/pathophysiology
Systemic sclerosis is thought to be caused by environ-
mental events in a genetically susceptible individual 
that trigger a chronic and self-amplifying multifocal 
process characterized by vascular alterations, inflamma-
tion and autoimmunity, and fibrosis12 (FIG. 2). Cell types 
prominently implicated in the disease process include 
endothelial cells, platelets, structural cells (pericytes, 
vascular smooth muscle cells, fibroblasts and myofibro-
blasts) and immune cells (T cells, B cells, monocytes, 
macrophages and dendritic cells). Prominent mediators 
of cell activation include transforming growth factor-β 
(TGFβ), platelet-derived growth factor (PDGF), IL-6 
and IL-13, endothelin 1, angiotensin II, lipid media-
tors and autoantibodies, along with reactive oxygen 
species (ROS) and numerous other biologically active 
substances13. Still poorly understood is the pathogenetic 
basis for female predominance, the disease hetero geneity 
and variable outcomes, the nature of environmental trig-
gers and their interplay with the genetic background, 

and the precise contribution of these interactions to 
disease susceptibility and phenotype.

Vascular injury and microangiopathy
Microvascular injury and endothelial cell activation that 
results in vascular damage are the earliest, and possi-
bly primary, events in systemic sclerosis14. Progressive 
vascular damage causes a reduction in the number of 
capillaries (rarefaction), thickening of the vessel wall 
due to intimal and smooth muscle cell proliferation, 
and luminal narrowing, which lead to tissue hypoxia and 
oxidative stress14. In addition, activated endothelial cells 
show increased expression of the adhesion molecules 
vascular cell adhesion protein 1 (VCAM1), intercel lular 
adhesion molecule (ICAM) and E-selectin, resulting 
in recruitment of inflammatory cells. They also secrete 
endothelin 1, connective tissue growth factor (CTGF; 
also known as CCN2) and other profibrotic factors that 
stimulate vascular smooth muscle cell proliferation 
and extracellular matrix production. Inflammatory cell 
infiltration in the lesions can be prominent in patients 
with early-stage disease, and inflammatory and immune 
cells are an important source of TGFβ, PDGF, IL-1, IL-6 
and other profibrotic mediators (FIG. 2).

Inflammation and immune response
Dysregulation of both innate and adaptive immunity 
plays a prominent part in systemic sclerosis. Evidence 
of (auto)immunity includes the presence of inflamma-
tory cells and inflammatory signatures in target tissues 
such as the skin and lungs; alterations in the number 
and function of circulating immune cells; the pres-
ence of a prominent type I interferon (IFN) signature 
in circulating and tissue-infiltrating immune cells; 
and characteristic and distinct serum autoantibodies 
detected in most patients. Furthermore, genetic stud-
ies identified that polymorphisms of IRF5 (interferon 
regulatory factor 5) and STAT4 (signal transducer and 
activator of transcription 4), along with several other 
immune pathway genes, are prominently associated 
with systemic sclerosis15.

Cellular response. Circulating and tissue-infiltrating 
monocytes and macrophages, plasmacytoid dendritic 
cells and stromal cells show a type I IFN signature, 
defined by increased expression of IFN-regulated 
genes, which reflects activation of Toll-like receptor 
(TLR)-mediated immune signalling16–18. TLR activation 
in these cells is thought to be triggered by endogenous 
ligands, such as nucleic acid-containing immune com-
plexes, as well as by damage-associated molecular pat-
terns (DAMPs), such as variants of extracellular matrix 
components generated during tissue injury.

Fibrotic tissue also displays prominent infiltration 
of bone marrow-derived immune cells that include 
CD4+ T cells, macrophages, activated B cells, plasma-
cytoid dendritic cells and mast cells. Among CD4+ 
T cells, type 2 T helper (TH2) cells — characterized by 
secretion of IL-4 and IL-13 — predominate over TH1 
cells, which primarily secrete anti-fibrotic IFNγ19. The 
role of TH17 cells remains to be defined, with some 

Box 1 | Raynaud phenomenon

• Raynaud phenomenon refers to reversible vasospasm 
of arteries, such as digital arteries

• In systemic sclerosis, the vasospasms are 
accompanied by progressive structural damage, 
including proliferation of the arterial intima, 
adventitial fibrosis and collagen deposition

• Vasodilators target vasospasm, especially calcium 
channel blockers, phosphodiesterase 5 inhibitors 
and prostacyclins
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Figure 1 | Characteristics of the EUSTAR cohort. Figure shows the gender and age 
distribution of the European League Against Rheumatism (EULAR) Scleroderma Trials 
and Research (EUSTAR) cohort in 2013. The EUSTAR registry contains baseline and yearly 
follow-up data of approximately 10,000 patients with systemic sclerosis from about 
200 centres. However, inclusion and exclusion criteria may vary between studies, which 
leads to differences in sample size. More information on cohort characteristics and 
quality control is available at www.eustar.org.
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studies implicating IL-17 in fibrosis and other studies 
indicating an anti-fibrotic effect20. Finally, emerging 
evidence suggests an important pathogenetic role of 
tissue macrophages with an ‘alternatively activated’ M2 
phenotype. Levels of soluble CD163, a marker for 
M2 macrophages, are elevated in the sera of patients 
with systemic sclerosis, as well as on macrophages in 
the affected skin and lungs21–24. The mechanisms of 
how these polarized macrophages are differentiated — 
as well as how they contribute to the induction, pro-
gression and possibly resolution of vascular damage 
and tissue fibrosis — remain to be determined.

Cytokines and chemokines. TH2 cytokines, including 
IL-4 and IL-13, have prominent roles in the pathogen-
esis of systemic sclerosis. The levels of TH2 cytokines 

are increased in the serum and fibrotic tissue, and they 
stimulate fibroblast proliferation and extracellular 
matrix synthesis in cell cultures25. These findings are 
supported by studies in animal models, as illustrated 
by the attenuation of fibrosis in mice with the genetic 
deletion of Il13, whereas targeted overexpression of Il13 
results in pulmonary fibrosis26.

Of special interest in systemic sclerosis is IL-6, a 
multifunctional cytokine produced by T cells and 
B cells, fibroblasts, fibrocytes and endothelial cells. 
IL-6 signals through the widely expressed GP130 
receptor that forms a heterodimer with IL-6 receptor 
subunit-α, which activates the JAK/STAT and mitogen-
activated protein kinase (MAPK) pathways and induces 
TH2-dominant immunity, inflammation and fibrotic 
responses. High levels of IL-6 in systemic sclerosis 
correlate with the extent of skin involvement and por-
tend poor long-term outcomes27. In vitro, an antibody 
against human IL-6 reduced type I collagen levels in 
fibroblasts derived from patients with systemic sclero-
sis, whereas mice with the genetic deletion of Il‑6 had 
reduced inflammation and fibrosis after a profibrotic 
challenge (bleomycin). Moreover, administration of 
an IL-6 receptor-specific antibody in mice prevented 
development of fibrosis induced either by bleo-
mycin or by immunization with topo isomerase I28,29.  
These observations provide the rationale for ongo-
ing clinical trials of IL-6 receptor-specific antibody 
(toci lizumab) in systemic sclerosis (ClinicalTrials.gov  
identifier NCT01532869).

Chemokines have important roles in angiogenesis, 
wound healing and fibrosis. Serum and tissue lev-
els of C-C motif chemokine 2 (CCL2; also known as 
MCP1), CCL3 (also known as MIP1α), IL-8 and CCL18 
are increased in patients with systemic sclerosis, cor-
relate with disease severity and can predict progres-
sion30–32. Plasmacytoid dendritic cells from patients 
were found to secrete markedly elevated amounts of 
the small chemokine platelet factor 4 (PF4; also known 
as CXCL4); under physiological conditions, PF4 is pri-
marily localized in α-granules of activated platelets33. 
Levels of PF4 were elevated in the sera and skin from 
patients with systemic sclerosis and were good predic-
tors of the risk of pulmonary complications, including 
lung fibrosis and PAH33.

Autoantibodies. Nearly all patients with systemic scle-
rosis have highly specific circulating autoantibodies 
(TABLE 2). Most commonly, these autoantibodies are 
directed against intracellular nuclear and nucleolar 
components, but they can also be directed against cell 
surface receptors and extracellular antigens, includ-
ing fibrillin 1, matrix metalloprotease 1 (MMP1) and 
MMP3 (REF. 34). Although the diagnostic importance 
of nuclear- and nucleolar-specific antibodies in sys-
temic sclerosis is well recognized, their potential role 
in contributing to pathogenesis and tissue damage 
is not. However, of interest is that patients with sys-
temic sclerosis have been reported to have circulating 
autoantibodies to cell surface receptors for acetylcho-
line (the muscarinic acetylcholine receptor M3), PDGF, 
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Figure 2 | The disease process in systemic sclerosis. The fibroblast activation and 
fibrosis underlying systemic sclerosis are induced by vascular injury and endothelial 
activation, leading to an uncontrolled inflammatory reaction. Step 1: the vascular 
response to injury consists of endothelial activation; production of endothelin 1 and 
chemokines; increased expression of adhesion molecules; and platelet activation. 
Step 2: in response to chemokines and adhesion receptors, several types of 
inflammatory cells are recruited. Activated type 2 T helper (T

H
2) cells secrete TGFβ 

and IL-13; B cells produce autoantibodies and IL-6; macrophages release 
transforming growth factor-β (TGFβ); and dendritic cells secrete interferon-α (IFNα) 
and platelet factor 4 (PF4). Step 3: resident fibroblasts, activated by this cytokine 
‘cocktail’, generate reactive oxygen species (ROS) and undergo differentiation into 
myofibroblasts, which are responsible for the excessive extracellular matrix (ECM) 
production. Activation of Toll-like receptor 4 (TLR4) on immune cells and 
myofibroblasts by the ECM further exacerbates this reaction. CTGF, connective 
tissue growth factor; PDGF, platelet-derived growth factor.
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endothelin 1 and angiotensin II, among others. These 
autoantibodies have been shown in some studies to be 
functional, as they were capable of triggering receptor 
activation and eliciting profibrotic responses35,36.

Fibrosis
The distinguishing hallmark of systemic sclerosis is 
progressive tissue accumulation of fibrous matrix 
composed of collagen, elastin, glycosaminoglycan and 
fibronectin. The process leads to permanent scarring 
and replacement of normal tissue architecture with com-
pact, mechanically stressed, rigid connective tissue13. 
Excessive accumulation of extracellular matrix results 
from a combination of increased synthesis by activated 
stromal cells; enhanced assembly and crosslinking cata-
lysed by prolyl and lysyl oxidase and transglutaminase 2; 
and defective degradation37.

Fibrotic tissue is characterized by the presence of 
α-smooth muscle actin-positive, apoptosis-resistant 
myofibroblasts. These contractile cells secrete not only 
matrix molecules but also TGFβ and other profibrotic 
mediators, further promoting extracellular matrix accu-
mulation and remodelling. The origin of activated mes-
enchymal cells in fibrosis is of great research interest 
and has therapeutic implications38. Monocyte-derived 
circulating mesenchymal progenitor cells (fibrocytes) 
— as well as tissue-specific transdifferentiation from 
pericytes, telocytes and endothelial cells — might each 
contribute to expansion of the reservoir of disease-
causing myo fibroblasts. A recent study using lineage 
tracing indicates that the majority of myofibroblasts 
in the fibrotic dermis in mice arise from intradermal 
adipocyte progenitors39.

Fibroblast differentiation, recruitment, prolifera-
tion and activation in systemic sclerosis are controlled 
by a combination of mechanical factors and paracrine 
and/or autocrine mediators (FIG. 3). Excessive collagen 
deposition and crosslinking increases tissue stiffness 
and reduces elasticity of affected organs, resulting in 
mechanical stress. Fibroblasts sense and respond to 
mechanical forces in their environment through a pro-
cess of mechanotransduction that involves cell surface 

integrins and changes in cytoskeletal tension mediated 
by focal adhesion kinase (FAK) and RHO-associated 
kinase. These signals activate the downstream effectors 
YAP (Yes-associated protein) and TAZ (transcriptional 
co-activator with PDZ-binding motif), which perpetu-
ate fibroblast activation and further exacerbate the 
fibrotic process40.

In addition, high levels of alternatively spliced 
isoforms of extracellular matrix molecules such as 
fibronectin (fibronectin-EDA (FnEDA)) and tenascin-C 
are known to accumulate within fibrotic lesions. One 
study demonstrated that these isoforms can directly 
bind to TLR4 on stromal cells and induce fibro-
blast activation and myofibroblast differentiation41. 
Blocking TLR4 signalling might therefore represent a 
novel therapeutic opportunity for halting fibrosis.

Of the multitude of soluble mediators implicated 
in systemic sclerosis, TGFβ is commonly viewed as 
the master regulator of fibrosis42. This pleiotropic 
cytokine is secreted from macrophages and other cells 
as an inactive precursor complexed to latent TGFβ-
binding protein and deposited within the extracellular 
matrix; it is converted to its biologically active form via  
integrin-mediated activation. Canonical TGFβ signal-
ling involves sequential phosphorylation of the type I 
TGFβ receptor (TGFR1; also known as ALK5), activa-
tion of cytosolic signal transducers SMAD2–SMAD3, 
and their binding to a consensus SMAD-binding ele-
ment found in TGFβ-inducible profibrotic genes. The 
SMAD pathway is positively and negatively regulated 
by various factors, including SMAD7, which blocks 
SMAD signalling, and the nuclear receptor NR4A1, 
which promotes SMAD7 degradation and modulates 
TGFβ signalling43,44. Fibrotic TGFβ responses can also 
be mediated via the transcription factor early growth 
response 1 (EGR1), the non-receptor tyrosine kinases 
ABL1 (previously known as c-ABL) and FAK, and 
potentiated via inactivation of transcriptional repressors 
such as peroxisome proliferator-activated receptor-γ 
(PPARγ), friend leukaemia integration 1 (FLI1) and 
krüppel-like factor (KLF) family members13. Fibroblasts 
derived from patients with systemic sclerosis show con-
stitutive FAK activation, which integrates TGFβ sig-
nalling and integrin-mediated mechanotransduction 
to drive persistent myofibroblast differentiation and 
ROS generation45. Other identified intra cellular TGFβ 
signalling pathways implicated in systemic sclerosis 
include MAPK1 and MAPK3 (also known as ERK2 and 
ERK1, respectively), p38, phosphatidylinositol 3-kinase 
(PI3K), AKT and TGFβ-activated kinase 1 (TAK)42. As 
integrins, ABL1, FAK and other TGFβ mediators can all 
be selectively targeted by pharmacological inhibitors, 
they represent potential therapeutic targets.

CTGF is a cysteine-rich matricellular protein 
that functions in conjunction with TGFβ to enhance 
fibrotic responses. CTGF is expressed at low levels in 
normal tissues but is markedly increased in the sera 
of patients with systemic sclerosis, and levels corre-
late with the extent of skin and pulmonary fibrosis46. 
TGFβ, endothelin 1 and angiotensin II are potent 
inducers of CTGF47.

Table 2 | Selected autoantibodies linked to complications in systemic sclerosis

Primary target of 
autoantibody

Immunofluorescence 
pattern

Clinical association

Diffuse cutaneous systemic sclerosis

DNA topoisomerase I Speckled Interstitial lung disease

RNA polymerase III Speckled Renal crisis and cancer

Fibrillarin (ribonucleolar protein; 
targets U3 RNP)

Nucleolar PAH and myositis

Limited cutaneous systemic sclerosis

Centromere proteins Centromeric Ischaemic digital ulcers 
and telangiectasia

Th/To ribonucleoprotein Nucleolar Interstitial lung disease

PAH, pulmonary arterial hypertension; RNP, ribonucleoprotein.
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Figure 3 | Molecular mechanisms of fibroblast activation in systemic 
sclerosis. Fibroblast activation and their transdifferentiation to 
myofibroblasts are regulated by various paracrine and/or autocrine 
molecules and mechanical stimuli, and this process involves a highly 
complex and interconnected intracellular signalling cascade50. 
a | Transforming growth factor-β (TGFβ) signalling has a central role by 
inducing profibrotic gene expression through activation of canonical 
(SMAD2–SMAD3 (SMAD2/3)- and SMAD4-dependent) and non-canonical 
pathways, and through crosstalk with other intracellular signalling 
pathways. SMAD2/3 cooperates with other transcriptional activators (for 
example, ETS1) to induce the expression of connective tissue growth factor 
(CTGF), collagen and other profibrotic genes189–191. Of note, the transcription 
co-activators p300 (a histone acetyltransferase) and CREB-binding protein 
(CREBBP), which are also present in the transcriptional complex at the 
promoter region of these genes, are constitutively elevated in fibroblasts 
isolated from patients with systemic sclerosis67. In addition, TGFβ signalling 
promotes profibrotic gene expression by inactivating the transcriptional 
repressors friend leukaemia integration 1 (FLI1) and peroxisome  
proliferator-activated receptor-γ (PPARγ)144,192. Non-canonical TGFβ 
signalling pathways with relevance to fibrosis include focal adhesion kinase 
(FAK), ABL1, phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein 
kinase 1 (MAPK1)–MAPK3 (MAPK1/3), p38, endoglin and SMAD1 
pathways193. The ABL1 pathway, for example, regulates the profibrotic 
transcription factor early growth response 1 (EGR1)194. b | TGFβ and hypoxia 
converge on EGR1 to stimulate NADPH oxidase 4 (NOX4) expression, 
leading to reactive oxygen species (ROS) generation194. c | In addition to 
TGFβ, canonical WNT signalling promotes fibrosis. This pathway is found to 
be hyperactivated in fibrotic lesions53. WNT3A induces a fibrogenic 
response in dermal fibroblasts53. WNT inhibitory factor 1 (WIF1) is a ROS 
target and is constitutively downregulated in fibroblasts derived from 
patients with systemic sclerosis50. d | Mechanical stress, sensed by integrins 
(ITGs), also has a pivotal role in the formation of myofibroblasts through 
induction of α-smooth muscle actin (α-SMA), CTGF and tenascin-C, among 
others. Mechanical stimulation triggers the formation of an intracellular 

multiprotein signalling complex composed of FAK, SRC, MEK, 
integrin-linked protein kinase (ILK), RHOA and F-actin195. Moreover, the 
profibrotic effects of CTGF are mediated through the ITG and SRC in dermal 
fibroblasts196. Two known transcriptional regulatory pathways mediate the 
cellular response to mechanical signals: myocardin-related transcription 
factors, MKL/myocardin-like protein 1 (MKL1), MKL2 and serum response 
factor (SRF); and the components of the Hippo pathway, YAP1 and WW 
domain-containing transcription regulator protein 1 (WWTR1)197. 
e | Alternatively, this pathway can be stimulated by RHO small GTPase and 
F-actin signalling, which is activated by endothelin 1, angiotensin II and 
sphingosine 1 phosphate/lysophosphatidic acid (S1P/LPA). f | Connective 
tissue molecules, such as an alternately spliced variant of fibronectin (FnEDA) 
and tenascin-C, which are induced by TGFβ and constitutively upregulated 
in systemic sclerosis, represent damage-associated molecular patterns 
(DAMPs) that serve as endogenous ligands of Toll-like receptor 4 (TLR4)41. 
The TLR4-mediated profibrotic pathway is not yet fully understood, but it 
might involve suppression of anti-fibrotic microRNA-29 (miR-29). Of note, 
miR-21 is suggested to be involved in promoting the fibrotic response by 
suppressing an inhibitor of the TGFβ non-canonical pathway — specifically, 
SMAD7 (REF. 68). g | IL-6 and IL-13 are pleiotropic cytokines, which directly 
or indirectly through TGFβ, drive collagen production and promote fibrotic 
matrix deposition198,199. h | Finally, platelet-derived growth factor (PDGF) 
signalling stimulates fibroblast migration, proliferation, survival and matrix 
gene expression48. DKK1, dickkopf WNT signalling pathway inhibitor 1; 
ECM, extracellular matrix; GP130, envelope glycoprotein 130; HDAC, 
histone deacetylase; IL-4R, IL-4 receptor; IRF3, interferon regulatory 
factor 3; LEF, lymphoid enhancer-binding factor; LRP, low-density 
lipoprotein receptor-related protein; MYD88, myeloid differentiation 
primary response protein 88; NF-κB, nuclear factor-κB; PDGFR, PDGF 
receptor; PDPK1, 3-phosphoinositide-dependent protein kinase 1; PKCγ, 
protein kinase C-γ; ROCK, RHO-associated protein kinase; STAT, signal 
transducer and activator of transcription; TCAM1, TIR domain-containing 
adaptor molecule 1; TCF, transcription factor; TEAD, transcriptional 
enhancer factor; TGFR, TGF receptor.
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PDGFs also have a role in fibrosis. PDGFs are hetero-
dimeric peptides secreted by platelets, macrophages, 
endothelial cells and fibroblasts that function as potent 
mitogens and chemo-attractants for mesenchymal cells48. 
Transgenic mice expressing a constitutively active PDGF 
receptor-α (Pdgfra) develop fibrosis in multiple organs49. 
Patients with systemic sclerosis show increased expres-
sion of PDGFRα and PDGFRβ in the skin and broncho-
alveolar lavage fluid and, as noted above, have circulating 
antibodies that trigger PDGFR-mediated fibroblast acti-
vation and ROS generation35. Explanted systemic sclero-
sis fibroblasts constitutively produce ROS, which might 
directly contribute to persistent fibrosis via DNA dam-
age and autocrine amplification of TGFβ, as well as to  
WNT-mediated fibrotic responses in these cells50.

The evolutionarily conserved WNT signalling net-
work controls developmental processes and the mainte-
nance of adult tissue homeostasis. Through the canonical 
β-catenin intracellular signalling pathways, WNT pro-
teins elicit fibrotic responses both directly and through 
TGFβ51. Aberrantly elevated expression of nuclear (acti-
vated) β-catenin and its target gene AXIN2 occur in the 
skin and lungs of patients with systemic sclerosis, as well 
as in animal models of the disease52,53. Microarray studies 

of skin biopsy samples provide further evidence for acti-
vated WNT–β-catenin pathways in systemic sclerosis, 
suggesting that therapeutic blockade of WNT signalling 
might be a possible therapeutic approach.

Genetic factors
Although the exact cause that triggers the onset of the 
microvascular damage and the associated immune 
response and fibrosis remains elusive, interplay 
between genetic factors and environmental events is 
likely to play a part. Although systemic sclerosis is not 
considered to be a Mendelian disorder, in a study of 703 
families, first-degree relatives of patients with systemic 
sclerosis had a RR of 13 (95% CI 2.9–48.6; P < 0.001) 
for developing systemic sclerosis54; they are also more 
likely to develop Raynaud phenomenon, systemic lupus 
erythematosus and other autoimmune diseases55.

Single-nucleotide polymorphisms. GWASs and immuno-
ChIP (chromatin immunoprecipitation) analyses have 
identified single-nucleotide polymorphisms (SNPs) at 
multiple loci that are associated with susceptibility to 
systemic sclerosis in general, and with specific clinical 
and autoantibody-defined disease subsets. In particular, 

Table 3 | Selected genetic variants identified as risk factors for systemic sclerosis*

Gene Clinical association Putative function of encoded 
proteins

Study approach Refs

Major histocompatibility region 
genes (HLA‑DQ1B, HLA‑DQA1, 
DBP1, DRB1 and NOTCH4)

Systemic sclerosis positive  
for topoisomerase I- and/or 
centromere-specific antibodies

Histocompatibility complex and 
immune regulation

GWAS and immunoChIP 15

IRF5‡ Systemic sclerosis Transcription factor regulating 
inflammatory gene expression

GWAS and immunoChIP 200

CD247 Systemic sclerosis T cell receptor and antigen recognition GWAS and immunoChIP 201

STAT4‡ Systemic sclerosis Signal transducer for type I interferon 
signalling in T cells

GWAS and immunoChIP 200

BANK1 dcSSc Scaffolding for B cell signalling Candidate gene study 202

A20-binding inhibitor of NF-κB 
activation (TNIP1)‡

Systemic sclerosis Blocks NF-κB ImmunoChIP 203

TNFAIP3‡ Systemic sclerosis positive for 
centromere-specific antibodies

Blocks NF-κB activation ImmunoChIP 204

PTPN22‡ Systemic sclerosis positive 
for topoisomerase I-specific 
antibodies

Intracellular protein tyrosine 
phosphatase and negative regulator 
of T cell activation; variants show 
increased phosphatase activity that 
enhances T cell receptor signalling

ImmunoChIP and 
meta-analysis

205

PPARG Systemic sclerosis Controls adipogenesis and suppresses 
fibrotic responses

GWAS, meta-analysis 
and candidate gene 
study

206

MECP2 (located on the 
X chromosome)

dcSSc DNA methylation Meta-analysis 207

IRAK1 (located on the 
X chromosome)‡

dcSSc and interstitial lung 
disease

Intracellular IL-1 receptor signalling 
and inflammation

Meta-analysis 208

BANK1, B cell scaffold protein with ankyrin repeats 1; ChIP, chromatin immunoprecipitation; dcSSc, diffuse cutaneous systemic sclerosis; GWAS, genome-wide 
association study; HLA, human leukocyte antigen; IRAK1, IL-1 receptor-associated kinase 1; IRF5, interferon regulatory factor 5; MECP2, methyl CpG-binding 
protein 2; NF-κB, nuclear factor-κB; PPARG, peroxisome proliferator-activated receptor gamma; PTPN22, tyrosine protein phosphatase non-receptor type 22; 
STAT4, signal transducer and activator of transcription 4; TNFAIP3, tumour necrosis factor α-induced protein 3; TNIP1, TNFAIP3-interacting protein 1. *Genetic 
abnormalities associated with systemic sclerosis and identified by GWASs, meta-analyses, candidate gene studies and ChIP analyses. ‡Loci also associated with 
systemic lupus erythematosus.
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SNPs in the major histocompatibility complex (MHC) 
class II region showed strong associations56. In addition, 
high-density SNP genotyping of autoimmune disease-
associated loci identified multiple non-MHC susceptibil-
ity loci (TABLE 3). A majority of these genetic variants are 
functionally implicated in immune regulation. However, 
as most SNPs were located outside gene-coding or regula-
tory regions, their causal role remains to be established. 
In addition, these studies show that systemic sclerosis 
is a complex multigenic disease that shares genetic risk 
factors with systemic lupus erythematosus and other 
auto immune diseases12, and indicate that immune dysreg-
ulation and autoimmunity are fundamental in the patho-
genesis. A major unanswered question is why patients 
with systemic sclerosis and systemic lupus erythemato-
sus, despite their genetic overlap, display such markedly 
different phenotypes. Moreover, the direct contribution 
of the genetic variants to disease susceptibility and mani-
festations, as well as the underlying mechanisms, remains 
largely unknown. Environmental events and consequent 
epigenetic changes are likely to have a major role.

Epigenetic modifications. The relatively modest genetic 
contribution to disease susceptibility has increasingly 
drawn attention to the role of environmentally induced 
epigenetic modifications that stably influence gene 
expression without changes in the genetic code. Best 
studied among these are DNA methylation, histone 
modifications and non-coding RNAs. Several of these 
epigenetic abnormalities have been found in systemic 
sclerosis57,58. A genome-wide DNA methylation analy-
sis revealed a large number of differentially methylated 
CpG sites in fibroblasts derived from patients with sys-
temic sclerosis59. Two transcription factors shown to 
inhibit fibrotic gene expression, KLF5 and FLI1, were 
simultaneously repressed at the epigenetic level owing to 
promoter methylation and silencing60. The patho genetic 
significance of altered regulation of these two genes was 
highlighted by the observation that transgenic mice 
with deletions of a single copy of Klf5 and Fli1 spontane-
ously developed a phenotype that recapitulated all three 
key features of systemic sclerosis: skin fibrosis, vasculo-
pathy and B cell activation with autoantibody produc-
tion. Moreover, fibroblasts isolated from patients with 
systemic sclerosis had elevated levels of methylation-
regulating genes and global DNA hypermethylation 
coupled with transcriptional silencing of dickkopf WNT 
signalling pathway inhibitor 1 (DKK1), WNT inhibitory 
factor 1 (WIF1) and secreted frizzled-related protein 1 
(SFRP1), genes that are involved in WNT signalling61,62. 
CD4+ T cells isolated from patients showed a general-
ized reduction of DNA methylation and of methylation- 
regulating genes such as DNA (cytosine-5)-methyl-
transferase 1 (DNMT1)63. By contrast, forkhead box 
P3 (FOXP3), which encodes a transcription factor 
controlling CD4+ regulatory T (TReg) cell differentia-
tion, was hypermethylated64. Post-translational histone 
modifications, including acetylation, deacetylation and 
methylation, are also implicated in systemic sclero-
sis. Although levels of histone de acetylases (HDACs) 
have been reported to be either elevated or reduced, 

pharmacological HDAC inhibition in wild-type fibro-
blasts resulted in suppression of fibrotic responses65,66. 
Indeed, the acetyltransferase p300 has been shown  
to promote fibrotic responses by enhancing collagen 
transcription. Importantly, p300 levels are elevated in 
systemic sclerosis fibroblasts67.

MicroRNAs (mi RNAs) are non-coding RNAs of 
18–23 nucleotides in length that function as intracel-
lular regulators of gene expression. Of particular inter-
est in systemic sclerosis are miR-21 and miR-29, which 
show aberrant expression in patients and might contrib-
ute to pathogenesis. On the one hand, miR-21, the level 
of which is elevated in fibrotic fibroblasts, suppresses 
the expression of anti-fibrotic SMAD7, thereby promot-
ing expression of profibrotic genes68. On the other hand, 
miR-29 has inhibitory effects on fibrotic gene expres-
sion; its levels are suppressed by fibrotic stimuli and 
are lower in fibroblasts isolated from patients with sys-
temic sclerosis than in those from healthy controls69,70. 
mi RNAs can be detected in the circulation and exert 
biological activities when incorporated into micro-
vesicles. Although much remains to be learned about 
the spectrum and mechanisms of action of aberrantly 
regulated mi RNAs in systemic sclerosis, these regula-
tory non-coding RNAs might be used as biomarkers 
and therapeutic targets in the future.

Environmental factors
Little is known about the environmental, dietary and life-
style exposures that might trigger the onset of systemic 
sclerosis in genetically susceptible individuals. Although 
smoking and alcohol have not been shown to increase 
disease risk, occupational exposures to silica dust, vinyl 
chloride and organic solvents might play a part. However, 
the absence of robust temporal or spatial disease clusters 
argues against the importance of these environmental 
factors in the pathogenesis of systemic sclerosis71–73.

Viruses and other infectious agents might be 
involved and have been investigated as potential envi-
ronmental triggers. Some patients have serum anti-
bodies specific to the UL94 epitope of the herpesvirus 
cytomegalovirus. Viral infection might have a causal 
role in systemic sclerosis by inducing vascular dam-
age and fibroblast proliferation74. In addition, RNA 
from Epstein–Barr virus, another member of the 
Herpesviridae family, has been found in fibroblasts and 
myofibroblasts within fibrotic lesions75.

Diagnosis, screening and prevention
Classification
Classification criteria for systemic sclerosis, first pub-
lished in the 1980s, had the primary goal of achieving a 
highly specific definition76. These criteria have been used 
for several decades for inclusion of patients into clinical 
and experimental studies. However, in clinical practice 
and in studies not aiming at treating patients with estab-
lished or advanced-stage disease, these criteria lacked 
adequate sensitivity, particularly in (non-advanced) 
patients with limited or no skin fibrosis77.

These obvious limitations led to the afore-
mentioned joint effort of the ACR and EULAR to 
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develop more-sensitive criteria that considered modern 
diagnostic measures5,6 (TABLE 4). The 2013 ACR–EULAR 
criteria showed high sensitivity and specificity (0.91 
and 0.92, respectively) in an international multicentre 
validation cohort of patients with systemic sclerosis and 
scleroderma-like disorders. This level of sensitivity and 
specificity was improved over previously published clas-
sification criteria and has been confirmed in a recent 
analysis from the Canadian Scleroderma Research Group 
cohort, which pointed to the importance of including 
Raynaud phenomenon and puffy fingers as criteria78.

There are several important considerations when 
applying the 2013 criteria. First, the classification items 
are cumulative, and past medical history must therefore 
be considered. Second, the criteria should not be applied 
to patients with skin thickening that spares the fingers 
or those who have a scleroderma-like disorder such as 
scleromyxedema or generalized morphea that better 
explains the skin manifestations. Most importantly, the 
classification criteria are not meant to be diagnostic. For 
example, although the 2013 criteria in a patient cohort 
enriched for early or mild systemic sclerosis clearly out-
performed the 1980 criteria, 44% of patients with early 
and mild forms of the disease (according to expert con-
sensus) were still not classified79. These results show that, 
although the diagnosis is often straightforward when the 
disease is advanced and severe, it remains challenging in 
individuals with early or mild disease.

As definite criteria for early diagnosis are still lack-
ing, EUSTAR launched the Very Early Diagnosis of 

Systemic Sclerosis (VEDOSS) initiative80,81. The results 
from their Delphi exercise with a group of international 
experts suggested that individuals who had Raynaud 
phenomenon in combination with puffy fingers, charac-
teristic nailfold or systemic sclerosis-specific anti bodies 
(or, alternatively, more than one of these items in the 
absence of Raynaud phenomenon) should be referred to 
an expert centre for further evaluation. These consen-
sus data were supported by a long-term, single-centre 
Canadian study, which revealed that 65% of patients 
with Raynaud phenomenon, who have an abnormal 
pattern on capillaroscopy and/or specific antibodies, 
developed definite systemic sclerosis at 5-year follow-
up. By contrast, <1% of the patients who only had 
Raynaud phenomenon progressed to definite systemic 
sclerosis82. This finding is supported by additional stud-
ies83 and has important implications for clinical practice. 
Measurement of systemic sclerosis-specific antibodies 
and nailfold capillaroscopy is advisable in patients with 
new-onset Raynaud phenomenon, particularly when 
additional features such as puffy fingers are present.

Considering the high prevalence of Raynaud 
pheno menon (up to 5.4% in males and 7.5% in females 
in European populations)84, it might be argued that 
such an approach is too costly and might lead to over-
diagnosis of mild cases that might never develop severe 
organ and life-threatening complications. However, 
some data underline that patients with early-stage 
disease have increased prevalence of digital ulcers, 
gastrointestinal dysmobility, abnormal heart function 
parameters on echocardiograms and a compromised 
diffusing lung capacity for carbon monoxide (DLCO) 
below 80%85,86. In addition, severe complications of 
the kidneys, heart, lungs, and gastrointestinal tract 
generally develop within 3 years of disease onset, par-
ticularly in patients with dcSSc87. These observations 
highlight the need for prompt referral of patients with 
suspected systemic sclerosis to specialized centres and 
the need for criteria to identify patients with early sys-
temic sclerosis who are at risk for developing dcSSc 
and/or major internal organ involvement.

Screening and diagnosis
Similar to other rheumatic diseases, early diagnosis of 
organ involvement enables timely therapeutic inter-
vention to prevent irreversible organ damage and to 
improve prognosis (FIG. 4). For example, patients with 
PAH identified through a systematic screening pro-
gramme showed less-severe PAH at baseline than 
those identified by routine clinical practice, which led 
to improved survival for screened patients88. Although 
these observations might be confounded by potential 
lead time bias, the results are consistent with benefi-
cial effects of early treatment of patients with PAH89. In 
patients at high risk for sclero derma renal crisis, includ-
ing those with early-stage (<4 years from onset) or 
progressive disease courses and RNA polymerase III-
specific antibodies, regular blood pressure screening 
is appropriate. However, conclusive evidence showing 
that this approach is associated with improved patient 
outcomes is still lacking. Unfortunately, the situation in 

Table 4 | The ACR–EULAR criteria for classification of systemic sclerosis*

Item Sub-item Weight 
or score‡

Skin thickening of the fingers 
of both hands extending 
proximal to the metacarpo-
phalangeal joints§

NA 9

Skin thickening of the fingers|| Puffy fingers 2

Sclerodactyly of the fingers (distal to 
the metacarpophalangeal joints but 
proximal to the interphalangeal joints)

4

Fingertip lesions|| Digital tip ulcers 2

Fingertip pitting scars 3

Telangiectasia NA 2

Abnormal nailfold capillaries NA 2

Lung involvement PAH and/or interstitial lung disease 2

Raynaud phenomenon NA 3

Scleroderma-related 
autoantibodies

Any of centromere-, topoisomerase I- and 
RNA polymerase III-specific antibodies

3

ACR, American College of Rheumatology; EULAR, European League Against Rheumatism; 
NA, not applicable; PAH, pulmonary arterial hypertension. *These criteria are applicable to 
any patient considered for inclusion in a systemic sclerosis study. The criteria are not 
applicable to patients with skin thickening sparing the fingers or to patients who have a 
scleroderma-like disorder that better explains their manifestations (that is, nephrogenic 
sclerosing fibrosis, generalized morphea, eosinophilic fasciitis, scleredema diabeticorum, 
scleromyxedema, erythromelalgia, porphyria, lichen sclerosus, graft-versus-host disease and 
diabetic cheiroarthropathy). ‡A summary score of ≥9 is sufficient to fulfil the criteria. 
§Sufficient criterion. ||The higher of the two is counted. Table reproduced from Ann. Rheum. 
Dis., Van den Hoogen, F. et al., 72, 1747–1755, 2013 with permission from BMJ Publishing 
Group Ltd, and from REF. 5, © 2013 by the American College of Rheumatology.
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systemic sclerosis is more complex than other rheumatic 
diseases. As different patient subgroups develop organ 
complications at different stages during disease progres-
sion, screening algorithms need to be adapted for each 
of the organ manifestations.

Skin fibrosis. The extent of skin fibrosis is often quan-
tified using the modified Rodnan skin score (mRSS), 
which assesses skin thickness at 17 body surface areas 
with a scale of 0 (normal) to 3 (severe) and has a maxi-
mum total score of 51. Measurements using ultrasono-
graphy and durometer have been tested, but the mRSS 
remains established as the most feasible approach90,91. 
Although the mRSS is routinely used and has been 
found to be reliable, valid and responsive to change, its 
substantial interobserver variability limits its utility91.

In patients with dcSSc, the natural course of skin 
fibrosis is generally characterized by a rapid increase, 
followed by a stabilization (plateau) period, after which 
skin fibrosis slowly ameliorates. Although this disease 
course has been confirmed in many clinical trials for the 
overall dcSSc population, the characteristics of the dis-
tinct stages show a high interindividual variability92. For 
example, the time between disease onset and progres-
sion to peak skin score might vary from a few months 
to several years. Similarly, the maximum mRSS ranges 
from mild to severe fibrosis associated with contrac-
ture of large joints and chest wall restriction. To date, 
attempts to enrich clinical studies with patients who have 
the same disease trajectory to control for experimental 
design have been unsuccessful92. Indeed, the spontane-
ous regression of skin fibrosis in late-stage disease cre-
ates challenges for both clinical trial design and clinical 
practice. Patients in whom the disease is still progress-
ing require therapeutic intervention, whereas patients 

with (spontaneous) regression or stabilization might not; 
that is, any clinical study of skin fibrosis that does not 
also include a control group with the disease has to be 
interpreted with great caution, as improvement might 
simply reflect the natural course of the disease rather 
than therapy-specific effects.

A recent analysis of the EUSTAR cohort has created 
evidence-based criteria to identify patients with dcSSc 
at high risk for progression of skin involvement93. This 
study identified short disease duration (<15 months) and 
a low mRSS at baseline (<22) as independent predictors 
of later skin worsening. These results are of importance 
for both clinical practice and clinical study design, as 
they indicate a therapeutic window of opportunity in 
early dcSSc before severe skin fibrosis has occurred.

Pulmonary arterial hypertension. PAH, a  life- 
threatening complication of systemic sclerosis, occurs in 
approximately 15% of patients, especially in those with 
lcSSc, long-standing Raynaud phenomenon and prom-
inent vascular manifestations94,95. Risk factors include 
longer disease duration, presence of centromere-specific 
antibodies and high telangiectasia burden96.

Recommendations for PAH screening in systemic 
sclerosis have been proposed by respiratory medicine 
and cardiology societies. These recommendations 
generally rely on symptoms and abnormal echocardio-
grams97,98. However, symptoms associated with PAH 
are nonspecific and generally occur late in the disease 
course. In addition, although echocardiography alone 
can identify later, clinically manifest disease stages, 
it is not sensitive enough to detect early, preclinical 
conditions. Thus, appropriate indicators (identified 
by expert consensus) are now available for referring 
patients for right heart catheterization when PAH is 
suspected99,100. The recommendations suggest that 
right heart catheterization is appropriate for patients 
with unexplained or progressive dyspnoea, dispropor-
tionately low DLCO, echocardiographic evidence of 
elevated pulmonary artery pressures and/or evidence 
of right ventricular volume overload, such as increase 
in serum levels of amino-terminal pro-brain natriuretic 
peptide (NT pro-BNP).

These recommendations are supported by consid-
erable evidence from clinical studies. For example, the 
Cochin risk prediction score considered simple clini-
cal measures such as forced vital capacity (FVC), DLCO 
and age to classify patients at high risk for the develop-
ment of PAH — calculated using the formula 0.0001107
(age) + 0.0207818(100 – FVC) + 0.04905(150 – DLCO/
alveolar volume)101. Values >2.73 put patients at risk 
of PAH during 24-month follow-up101. The DETECT 
study is the only one that used right heart catheteriza-
tion in all patients to confirm the diagnosis of PAH. The 
DETECT score (see the DETECT website) is validated in 
patients with a disease duration of >3 years and DLCO 
of <60%102. It recommends a two-step approach with 
clinical and laboratory measures in the first stage. If a 
certain score is passed, patients are referred to echo-
cardiography for evaluation of the right atrial area and 
tricuspid regurgitant jet velocity. Patients deemed to be 
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Figure 4 | Organ complications associated with systemic sclerosis. The uncontrolled 
fibrosis and scaring of the skin and internal organs in systemic sclerosis leads to severe 
and sometimes life-threatening complications. The average frequency of the specific 
complications is indicated in parentheses. PAH, pulmonary arterial hypertension.
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at risk are further tested by right heart catheterization. The 
DETECT algorithm outperformed current consensus-
based society guidelines on the identification of PAH 
and on the resources spend on catheterization.

Interstitial lung disease. Interstitial lung disease is clini-
cally significant in approximately 40% of patients and 
accounts, together with PAH, for approximately 50% of 
all systemic sclerosis deaths103. Screening tools used in 
current clinical practice, such as pulmonary function 
tests (spirometry and DLCO) and 6-minute walking dis-
tance, have low sensitivity to detect systemic sclerosis- 
associated interstitial lung disease. For example, in a 
recent analysis, >50% of patients who have systemic 
sclerosis and interstitial lung disease had normal lung 
function parameters104. High-resolution CT scan-
ning detects interstitial lung disease in most patients 
with abnormal lung function parameters. At disease 
onset, ‘ground glass opacification’ is observed on high- 
resolution CT images of the chest that can progress to 
‘honeycomb’ changes and traction bronchiectasis105 
(FIG. 5). The clinical presentation is nonspecific inter-
stitial pneumonitis with predominantly basilar involve-
ment106. Repeat CT imaging should be limited owing to 
the radiation dose. Novel approaches that show prom-
ise include ultrasonography and high-resolution CT 
with lower radiation exposure using reduced number 
of slices107–109. Bronchoalveolar lavage and lung biopsy 
have not been shown to have diagnostic or predictive 
value and are consequently rarely indicated.

In many patients with systemic sclerosis, inter stitial 
lung disease remains mild. Thus, identification of those 
who might show progression towards organ failure 
is an important clinical challenge. Early-stage dcSSc 
(disease duration <3–4 years), extensive fibrosis on 

high-resolution CT (>20% of lung volume) and clini-
cally meaningful fibrosis with low-lung-function para-
meters were associated with worse prognosis in several 
studies1,110–112. The presence of topoisomerase I-specific 
antibodies is an additional risk factor113,114. Worsening 
of lung function parameters such as FVC might also  
be a negative prognostic factor, but this has not been 
documented in systemic sclerosis.

Digital ischaemic ulcers. Approval in Europe of an 
endothelin receptor antagonist (bosentan) for the pre-
vention of digital ulcers presented a need for predic-
tion algorithms to identify patients who are at risk for 
developing new digital ulcers. Several studies showed 
that previous or current digital ulcers are one of the 
strongest risk factors for recurrent ulcers115. In addition, 
nailfold capillaroscopy-based indices of microvascular 
alterations have been developed for systemic sclerosis. 
The capillaroscopic index (CSURI index) is based on the 
number and maximum diameter of megacapillaries and 
capillaries, and is validated in independent cohorts115,116. 
Its utility is limited by the fact that megacapillaries have 
to be present for calculating the index.

Management
Systemic sclerosis involves a wide spectrum of clini-
cal features that encompass vascular, immune and 
fibrotic manifestations, and affects many organs. No 
single approach to treatment has proved uniformly 
effective, and clinical trials are limited by the lack of 
adequate outcome measures and the variable course 
of the disease. Current therapeutic approaches include 
general immuno suppression and complication-specific 
therapies. Future studies show promise to use poten-
tially more-sensitive and more-specific biomarkers in 
the assessment of optimal therapeutic approaches.

The initial approach to optimal management of sys-
temic sclerosis is to determine the disease phenotype and 
disease stage117. Phenotype assessment is important in 
determining potential complications that differ between 
the two principal systemic phenotypes of the disease 
(that is, lcSSc and dcSSc)118,119. For example, renal dis-
ease tends to be much more common in dcSSc, whereas 
PAH tends to be observed more frequently in lcSSc. 
Observational studies have demonstrated that rapid pro-
gression of organ involvement predominantly occurs in 
the earlier stages of disease. In late-stage disease, fibrosis 
in patients with both lcSSc and dcSSc might remain quite 
stable and, therefore, not require intervention117.

Immunosuppression and immunomodulation
Immunomodulation is the ‘centrepiece’ of current ther-
apeutic approaches and is based on the rationale that 
this resets the immune system. More-targeted therapies 
are currently not yet available.

Immunomodulatory approaches with myelosup-
pression or myeloablation followed by autologous 
haemato poietic stem cell (HSC) transplantation have 
been evaluated as a therapeutic strategy in systemic 
sclerosis. As an example, the ASSIST trial was an open-
label, randomized Phase II trial, in which patients with 

Nature Reviews | Disease PrimersFigure 5 | Early systemic sclerosis-associated interstitial 
lung disease. High-resolution chest CT scan of a patient 
with diffuse cutaneous systemic sclerosis is shown. Of 
note are extensive bilateral subpleural ground glass 
opacities (indicated by black arrows), and early fibrosis 
and traction bronchiectasis (indicated by yellow arrow 
heads) at the lung bases. These findings are characteristic 
of nonspecific interstitial pneumonia. 
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dcSSc and pulmonary involvement were treated with 
intravenous cyclophosphamide followed by either HSC 
transplantation (treatment arm) or monthly pulse intra-
venous cyclophosphamide (control arm). At 12-month 
follow-up, all 10 patients who received HSC trans-
plantation showed improvement in skin score (mRSS 
decreased by at least 25%) and in lung function (FVC 
increased by at least 10%) compared with none of the 9 
patients in the control arm120. Results from a multicentre 
European trial (ASTIS) showed that high-dose immuno-
suppressive therapy and autologous HSC transplantation 
in patients with early dcSSc who had poor prognoses 
(most of whom had either interstitial lung disease or a 
history of scleroderma renal crisis) experienced a sur-
vival benefit over conventional immunosuppression121. 
In this study, 156 patients were randomly assigned either 
to conventional immune suppression with monthly 
intravenous cyclophosphamide or to high-dose cyclo-
phosphamide followed by autologous HSC transplanta-
tion. At a median of 5.8 years of follow-up, there was a 
significant event-free (event defined as death or irrevers-
ible organ failure) survival benefit in the transplantation 
group121. Although this approach is clearly of benefit for 
patients with a poor prognosis, it is not for all patients, 
as 10% of all treatment-related mortality occurred with 
HSC transplantation. Thus, HSC transplantation should 
be viewed as a potential therapeutic option for patients 
with aggressive systemic sclerosis but should not be con-
sidered a standard of care. Additional trials have also 
been initiated. For example, a large multi centre trial 
comparing monthly intravenous cyclo phosphamide to 
myelo ablation with cyclophosphamide and total body 
irradiation (SCOT) has completed enrolment, but 
results are not yet available (ClinicalTrials.gov identi-
fier NCT00114530). Another multicentre clinical trial 
(STAT) of myeloablation followed by HSC transplan-
tation and long-term immunosuppression (myco-
phenylate) for dcSSc is currently recruiting subjects 
(ClinicalTrials.gov identifier NCT01413100).

Given the modest benefit of conventional immuno-
suppressants, which are associated with risks and 
the efficacy of which decreases over time, targeted 

immunosuppressive or immune ablation treatments are 
urgently needed. No such therapy currently exists, but 
there are several promising therapies in development that 
target potential drivers of disease pathogenesis. These 
agents include tocilizumab (which targets IL-6), abata-
cept (T cell activation inhibitor), fresolimumab (which 
targets TGFβ) and rilonacept (IL-1 inhibitor) (TABLE 5).

Interstitial lung disease
The standard of care for systemic sclerosis-associated 
interstitial lung disease includes assessment of disease 
stage and chronology — more specifically, stability or 
progression using high-resolution CT and assessment 
of changes in pulmonary functions with spirometry 
and DLCO. Immunosuppressive therapy might be 
appropriate for patients who show evidence of progres-
sion or early-stage disease. For patients with end-stage 
disease, lung transplantation can be considered122.

Several clinical trials have provided evidence to sup-
port the use of immunosuppressive agents in the man-
agement of systemic sclerosis-associated interstitial lung 
disease. One randomized clinical trial compared pla-
cebo to oral cyclophosphamide over a 12-month period 
(Scleroderma Lung Study I123) and showed a signifi-
cant benefit in lung function parameters (FVC) in the 
experimental arm. However, a follow-up study showed 
that this benefit decreased after 2 years, suggesting a 
transient response124. Post-hoc analysis revealed that 
patients with more-extensive lung fibrosis at baseline 
had greater improvement in FVC than those with mod-
est lung fibrosis. Of note, patients with diffuse skin fibro-
sis had a greater reduction in skin scores than patients 
with less skin involvement. Another randomized, 
placebo-controlled trial explored monthly intravenous 
cyclophosphamide administration (for 6 months) fol-
lowed by oral azathioprine (for 6 months) and showed 
a trend towards improvement in the treated group with 
changes in FVC and DLCO as the primary outcomes125. 
Other therapies currently under evaluation include 
myco phenylate mofetil (immunosuppressive), pirfeni-
done (anti-fibrotic), palmolidomide (anti-fibrotic) and 
rituximab (which targets CD20) (TABLE 5).

Table 5 | Selected clinical trials in systemic sclerosis

Therapeutic 
agent

Mechanism of action Trial status ClinicalTrials.gov 
identifier

Interstitial lung disease

Mycophenylate 
mofetil

Immunosuppressive Ongoing randomized trial versus 
cyclophophosphamide (SLS II)

NCT00883129

Pirfenidone Anti-fibrotic Open-label safety trial completed NCT01933334

Palmolidomide Anti-fibrotic Open-label safety trial in progress NCT01559129

Overall disease

Fresolimumab Anti-fibrotic (TGFβ-specific antibody) Open-label safety trial completed NCT01284322

Rilonacept IL-1 inhibitor Randomized trial in progress NCT01538719

Tocilizumab IL-6 receptor-specific antibody Randomized trial in progress NCT01532869

Abatacept T cell activation inhibitor Randomized trial in progress NCT02161406

TGFβ, transforming growth factor-β.
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Pulmonary arterial hypertension
Therapy of systemic sclerosis-associated PAH has 
undergone considerable advances over the past decade. 
First-line therapy includes vasodilating, rather than 
immunosuppressive, agents. Almost all therapeutic trials 
of PAH included patients with systemic sclerosis; how-
ever, only one randomized trial has so far exclusively 
examined systemic sclerosis-associated PAH126. The 
pharmacological approaches to PAH include blocking 
the vasoconstrictive effects of endothelin 1 (ET1 antag-
onists) or enhancing the vasodilatory effects of nitric 
oxide (phosphodiesterase (PDE) and guanylate cyclase 
inhibitors) and prostacyclin (epoprostenol and trepro-
stinil). Endothelin antagonists (including bosentan, 
ambrisentan and macitentan), PDE inhibitors (sildenafil 
and tadalafil) and guanylate cyclase inhibitors (riociguat) 
have shown marked haemodynamic and symptomatic 
improvement in PAH127. However, only the most recent 
ET1 inhibitor, macitentan, has shown a significant 
improvement in event-free (event defined as death or 
hospitalization from PAH) survival in a trial of predomi-
nately idiopathic and connective tissue disease-associated 
PAH compared with placebo128. Early evidence suggests 
that combination oral therapies — for example, ET1 
antagonists combined with PDE5 inhibitors — might be 
more effective than single agents129.

The current standard of care for symptomatic 
patients with NYHA (New York Heart Association) 
functional class II (mild to moderate impairment) is to 
start with ET1 or PDE5 inhibitors. For patients with 
advanced-stage disease or NYHA functional classes III–
IV, continuous intravenous infusion with prostacyclin 
derivatives, such as epoprostenol, can be considered130. 
Lung transplantation is an option for some patients with 
end-stage disease122.

Skin fibrosis
The assessment of skin disease, a cardinal manifestation 
of systemic sclerosis, is hampered by the lack of sensi-
tive and specific outcome measures, and by the vary-
ing natural history of the disease. No single therapy has 
yet been shown to be conclusively effective. In patients 
with dcSSc, the mRSS typically decreases over time, 
complicating the assessment of the skin as an outcome 
in clinical trials131. A multicentre trial of methotrexate 
versus placebo showed a trend towards improvement 
in the methotrexate arm at 24 months132. In the SLS I 
trial, a modest but significant improvement in mRSS 
was observed in cyclophosphamide-treated patients with 
dcSSc compared with controls123.

Scleroderma renal crisis
Scleroderma renal crisis occurs in approximately 5% 
of patients, most commonly in those with dcSSc and 
early-stage (<4 years) disease. The use of steroids is 
recognized as a risk factor, as is the presence of RNA 
polymerase III-specific antibodies133. Renal crisis onset 
is generally heralded by the sudden development of 
hypertension, progressive renal insufficiency, protein-
uria and evidence of microangiopathy134. Prior to the 
introduction of angiotensin-converting enzyme (ACE) 

inhibitors, scleroderma renal crisis was associated 
with progression to end-stage renal disease and high 
mortality. ACE inhibitors have substantially improved 
outcomes, although the risk of progression to end-
stage renal disease remains 50% even with early use of 
these drugs133,135. Approximately 30% of patients who 
require renal replacement therapy are able to discon-
tinue haemo dialysis within 1 year with continued ACE 
inhibitor treatment136. The use of ACE inhibitors to pre-
vent renal crisis is paradoxically associated with worse 
renal outcomes and increased mortality, perhaps because 
new or worsening hypertension is masked by incomplete 
inhibition of the renin–angiotensin system137.

Digital ulcers and Raynaud phenomenon
Raynaud phenomenon and digital ischaemic ulcers 
occur in approximately 90% and 40% of patients with 
systemic sclerosis, respectively, and account for substan-
tial morbidity with pain and limitation of hand func-
tion138,139. First-line therapy for symptomatic Raynaud 
phenomenon commonly includes calcium channel 
blockade. Resistant or severe Raynaud phenomenon 
can be treated with PDE5 inhibitors such as tadalafil 
or sildenafil, which have also shown to be of benefit 
for digital ischaemic ulcers140,141. Endothelin antago-
nists seem to be helpful in preventing digital ischaemic  
ulcers but not in healing established ulcers142,143. Other 
treatment options reported to be effective include topi-
cal nitrates (Raynaud phenomenon), intradigital injec-
tions of botulinum toxin (severe digital ischaemia and 
ulceration) and intravenous prostanoids (threatened 
digital ischaemia)144.

Musculoskeletal complications
A notable proportion of patients with systemic sclerosis 
develop arthropathy or myositis, which may contribute 
substantially to extremity dysfunction and disability. 
Physical and occupational therapy to maintain finger 
mobility and extremity function are important adjunc-
tive therapies. Low-dose prednisone can provide symp-
tomatic and functional benefit for both inflammatory 
arthritis and myositis. Prednisone at doses >15 mg 
daily is generally avoided in patients with dcSSc owing 
to concern about precipitating renal crisis145. Weekly 
metho trexate treatment can be used for musculo skeletal 
complications. Open-label studies of TNF-blocking 
agents, abatacept and tocilizumab suggest that these 
agents may be of benefit in some cases117,146.

Gastrointestinal involvement
Upper gastrointestinal involvement occurs in approxi-
mately 90% of patients with systemic sclerosis. The 
most common complication is gastroesophageal reflux 
disease owing to disordered oesophageal motility and 
to incompetence of the lower oesophageal sphincter, 
which results in oesophagitis, oesophageal strictures and 
Barrett oesophagus. Varying degrees of gastrointestinal 
dys motility can occur almost anywhere along the gastro-
intestinal tract and lead to aspiration, pseudo-obstruction 
and bacterial overgrowth147,148. Gastric antral venous 
ectasia can be a cause of gastrointestinal haemorrhage149.
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Treatment of gastrointestinal complications remains 
largely symptomatic. In addition to anti-acid treatment, 
pro-motility agents (such as metchlopramide, domperi-
done, octreotide and erythromycin), antibiotics for bac-
terial overgrowth and argon laser ablation for lesions are 
occasionally effective147.

Calcinosis cutis
Tumoral calcinosis or calcinosis cutis occurs in up 
to 25% of patients with systemic sclerosis. Calcinosis 
has a broad spectrum of severity ranging from tiny 
asymptomatic lesions detected as incidental radio-
logic findings, to large bulky deposits associated with 
severe symptoms150,151. No treatment has been shown 
to be uniformly effective. Surgical removal or debulking 
may be options for patients with especially troublesome 
lesions152. The development of a validated radiographic 
scoring system to evaluate calcinosis may facilitate the 
systematic assessment of therapeutic options153.

Quality of life
Systemic sclerosis is associated with an increase in 
mortality, but this has been improving during the past 
few decades154. As systemic sclerosis is a multisympto-
matic disease, quality of life of patients may be severely 
affected147. A review on how to measure quality of life 
in systemic sclerosis is beyond the scope of this Primer 
but has been covered elsewhere139,155,156. Overall, gen-
eral health, as measured by the SF-36 health survey, is 
reduced in systemic sclerosis compared with the age- and 
sex-matched controls157. Patients with systemic sclerosis 
also have poor quality of life as measured by a reduced 
patient global assessment of health, chronic pain, fatigue 
and sleep disturbance157–159. Functional impairment often 
worsens over time (as measured by the Health Assessment 
Questionnaire Disability Index (HAQ-DI))160.

Many symptoms affect quality of life in systemic 
sclerosis — for example, pain161, gastrointestinal symp-
toms, pruritus (itch)162, fatigue, sleep problems, work 
disability163 and sexual dysfunction164. Work disabil-
ity in systemic sclerosis is higher than in rheumatoid 
arthritis165. The pain experience can have many causes, 
such as skin inflammation, Raynaud phenomenon, dig-
ital ulcers, inflamed calcinosis and joint and/or tendon 
swelling. Pain scores averaged around four out of ten 
on a visual analogue scale in a population of patients 
with systemic sclerosis on treatment (outpatients who 
were attending a follow-up visits)157. Pain management 
comprises chronic pain medication (pregabalin, gaba-
pentin, serotonin–noradrenaline reuptake inhibitor 
(duloxetine) and selective serotonin reuptake inhibi-
tors), as well as treatments targeting the underlying 
cause. Gastrointestinal complications impair quality of 
life substantially166. Symptoms include faecal inconti-
nence, choking, aspiration, bloating, gas, constipation, 
diarrhoea, early satiety and gastric dumping. Treatment 
directed at the pathology can help and includes treat-
ment of small-bowel overgrowth with antibiotics, stool 
softeners, laxatives and pro-motility agents for severe 
constipation. A validated instrument to measure vari-
ous gastrointestinal symptoms is often used167,168. Itch 

is more difficult to treat, and options consist of anti-
histamines, lubrication of the skin, less bathing to 
prevent the skin from drying out, heat, massage and 
exercise. Fatigue is usually multifactorial. If it is associ-
ated with iron deficiency, treating the underlying cause 
can provide relief: erosive oesophagitis can be treated 
with proton pump inhibitors and pro-motility agents, 
whereas repeated laser therapy can alleviate the gastric 
antral vascular ectasia. Administration of iron or blood 
transfusions might be necessary. Anaemia caused by 
chronic disease is likely to improve upon suppression 
of inflammation. In 15% of patients, secondary Sjögren 
syndrome develops with dry eyes and mouth, which 
can be treated with artificial tears and frequent dental 
visits169. Most men with systemic sclerosis experience 
erectile dysfunction164.

The increased risk of malignancy is a concern in sys-
temic sclerosis, as is the case in other chronic inflamma-
tory conditions. A meta-analysis showed that the pooled 
standardized incidence ratio (SIR) for cancer in patients 
with systemic sclerosis was 1.41 (95% CI 1.18–1.68)170. 
The most common were lung, liver, haematological and 
bladder cancers, although absolute risk is lower than the 
general population. Of note, men are at higher risk than 
women for developing cancers. In both groups, the pres-
ence of RNA polymerase III-specific antibodies seems 
to be associated with an increased risk for cancers, par-
ticularly those developing at an early stage in the natu-
ral history of systemic sclerosis171,172. Moreover, patients 
with RNA polymerase III-specific antibodies who have 
developed cancers often have somatic alterations in the 
POLR3A gene, which encodes RNA polymerase III173, 
and show specific immune responses directed against 
the mutated RNA polymerase III subunit (RPC1) anti-
gen. These findings suggest that the mutations triggered 
cellular immunity and cross-reactive humoral immune 
responses that might have a role in disease pathogenesis.

In addition to these physical morbidities, many 
patients develop psychological complications, includ-
ing symptoms of depression, anxiety, fear of disease 
progression and dying, and body image concerns from 
disfigurement174,175. Clinical depression is not preva-
lent, but depressive symptoms are increased compared 
with the general population; this is a common feature 
of chronic diseases in which chronic pain occurs176,177. 
If there is clinical depression in systemic sclerosis, the 
usual treatment would be similar to other people diag-
nosed with depression, such as use of antidepressants177. 
As systemic sclerosis often causes visible changes to 
the patient’s face — for example, telangiectasia, tight 
skin, increased wrinkles around the mouth when skin 
softens, small upper lip, and loss of subcutaneous fat 
around the cheeks and nose — a stigma is associated 
with systemic sclerosis. There is a questionnaire that 
has been developed for patients with systemic sclerosis 
with respect to their appearance178. Patients also experi-
ence tightening of their hands, with swollen fingers or 
contractures, or with ulcers or digital loss. All of these 
changes may have an impact on self-esteem and can 
enhance a fear of dying in the patient. Trials are under-
way to improve hand function, body image and mood 
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through an innovative Internet network (Scleroderma 
Patient-centered Intervention Network (SPIN))179.

Outlook
Although systemic sclerosis remains a major clinical 
and research challenge, there are reasons to be opti-
mistic about progress in the next few years. Substantial 
advances in the past decade have demonstrated the 
feasibility of progress and pointed to new avenues for 
future success in understanding the disease process and 
in improving clinical outcomes. Below, we focus our 
discussion on areas in which we envision progress.

Advances in clinical trials
After many years of frustration in developing feasible 
and robust clinical studies, the outlook finally shows 
promise. Clinical trials are being completed that are 
able to differentiate active treatment from placebo 
owing to better design and understanding of the trial 

set-up, as well as to the nature of the agents tested. The 
development of a standard design for clinical trials 
in systemic sclerosis is still required and proves to be 
difficult (FIG. 6). Standardization is important because, 
by analogy with other areas of rheumatology, estab-
lishment of a reliable trial template will enable drug 
development to progress, which will be central to 
improvements in disease management180.

Recent studies show that high-intensity immuno-
suppression is a key addition to evidence-based treat-
ment in systemic sclerosis121. Nonetheless, finding better 
and less-toxic ways of achieving the same therapeutic 
outcome is essential121. Research should also focus on 
regenerative medicine and prevention of complications. 
Indeed, the non-lethal burden of systemic sclerosis is 
considerable and will only increase as treatments that 
target lethal complications improve. Research on clinical 
outcomes needs to be re-evaluated to take this eventu-
ality into account, and better clinical strategies to treat 
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Figure 6 | Future of clinical trial design in systemic sclerosis. The validation of potential medications or treatment 
strategies to tackle systemic sclerosis requires the development of a novel and robust clinical trial design. Essential 
parameters to implement such a novel scheme include an improved definition of patient subgroups, biomarker validation 
and better end-point assessment. The strategy proposed here is still speculative and might have to be refined in the future, 
but it illustrates several key areas in which progress is feasible. First, study cohorts should be defined in greater detail to 
enrich for the population that has progressive disease or that has the specific complication under evaluation. 
Second, the inclusion of a placebo control arm would reduce difficulties in evaluating variable clinical outcomes. 
Third, implementation of a crossover design in which patients are randomly assigned to active drug treatment after a 
placebo phase will strengthen data emerging from Phase I/II studies. Last, traditional clinical end-point assessment — such 
as examination of skin, digital ulcerations, lung fibrosis and other potential aspects of systemic sclerosis — requires 
updating. Possible tools that can be used are disease-specific patient-reported outcomes and composite disease response 
indices that incorporate multiple end points such as skin score, lung function and a health assessment questionnaire (HAQ), 
and may be more responsive than individual outcomes. For interim end points, biomarker validation in the blood and/or 
skin biopsy is preferred over clinical parameters. Interim end points can be assessed early for evidence of 
pharmaco dynamic effects or biomarker assessment: at 6 months in early-phase trials (Phase I/II) or 12 months for later 
studies (Phase II/III). A follow-up by a crossover or an open-label study for an additional 6 months can enhance the power of 
the interim trial. If required, adding additional standard treatments for the skin or lung will help to sustain the 
parallel-grouped, blinded, placebo-controlled design for at least 12 months, which is likely to be the minimum timeframe to 
obtain clinically meaningful benefits for these conditions. FVC, forced vital capacity; PAH, pulmonary arterial hypertension.
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calcinosis, ulcerations, gut disease and fatigue need to 
be developed.

Triage of new potential therapies can be facilitated 
by the development of molecular markers and predic-
tive scores that can be applied in the clinic1. Biomarkers 
are important, as there are many promising therapeutic 
avenues to explore; however, there are limited numbers 
of patients available for trials, and centres with the essen-
tial infrastructure and capacity to perform such trials. 
The number of new therapies, together with the poten-
tial repurposing of existing drugs, is likely to lead to an 
inevitable ‘bottleneck’ for early-phase studies. Although 
the development of better assessment tools, such as 
validated biomarkers and composite clinical scores, is 
challenging, it is essential for countering this problem181.

Better definition of disease subgroups
Systemic sclerosis is characterized by a very hetero-
geneous array of symptoms, even within the currently 
classified subgroups. Indeed, although certain compli-
cations are more frequent in dcSSc, this is not always the 
case. Moreover, it remains unknown why some mani-
festations such as gastroesophageal reflux or secondary 
Raynaud phenomenon are universal in systemic sclero-
sis, whereas others affect only a proportion of patients. 
Novel classification criteria are required to better predict 
the risk of complications and to justify early monitor-
ing and preventive treatment strat egies, in addition to 
tailoring treatment and stratifying patients for inclusion 
in clinical trials182,183. Subgroups are likely to be defined, 
to a large extent, on the basis of autoantibody subtypes, 
either in isolation or in combination with clinical or 
other variables. For example, topoisomerase I- and RNA 
polymerase III-specific antibodies seem to be strong 
predictors of lung fibrosis and scleroderma renal crisis, 
respectively, and are now included in the 2013 classifica-
tion criteria. Other antibodies associated with disease 
subtypes are likely to be identified through the use of 
proteomic and other molecular approaches, and these 
might complement gene or protein expression-based 
systemic sclerosis subsets.

Molecular basis of disease
A better understanding of the disease process and con-
nection between the complications in the different 
organs will help to better tailor treatments to individual 
patients. Although deciphering the link between cuta-
neous involvement and internal organ complications is 
prominent, it remains an important challenge. Research 
efforts of consortia aim to have sufficient biological 
samples linked to clinical annotation, which will lead 
to better insights of the autoimmune process, includ-
ing the intriguing link between cancer and systemic 
sclerosis172,173. Furthermore, elucidating the impact of 
the microbiome and the potential role of infection or 
colonization in triggering or progressing the pathology 
might herald new therapeutic options.

We envision additional focus on epigenetics, which 
will complement the advances in genetics. Challenges 
are the identification of disease-specific features and 
the determination of, for example, whether they are 

susceptibility factors or phenotype modifiers. Antibody-
based subgroups will also help to define disease subsets 
and elucidate pivotal biological mechanisms, including 
the potential role of autoantibodies that target relevant 
cell surface proteins and receptors.

Moreover, despite similarities between organ-based 
pathologies — such as pulmonary fibrosis, PAH and 
accelerated hypertension occurring outside the context 
of systemic sclerosis — there remain key differences that 
have yet to be understood. Better insights in the disease 
process will be important when considering transla-
tion or repurposing of emerging or existing therapies. 
Advances in the past two decades have already improved 
the overall survival of patients with dcSSc, including a 
more systematic approach to monitoring that enables 
earlier detection of significant complications that may 
be treated; use of specific therapies for complications 
such as PAH or scleroderma renal crisis; and advances 
in chronic supportive care.

Dysfunctional tissue remodelling
Progress in understanding the biology of systemic scle-
rosis has depended on drawing appropriate analogies 
from other areas of science, especially developmental 
biology and genetics. It is compelling to view systemic 
sclerosis as an almost inevitable consequence of having 
a connective tissue repair pathway that is essential for 
survival. It is intriguing that this might have some selec-
tive advantage in the population. In addition, this may 
provide an explanation for the persistence of the trait 
and the observed ethnic and racial differences.

Furthermore, the pathological mechanisms are likely 
to be shared with other conditions, including other 
autoimmune diseases and other forms of fibrosis. Key 
questions are how these processes in systemic sclerosis 
differ from other conditions and what the triggers or 
aetiopathological factors are. Moreover, the advances in 
reparative niche microenvironments, plasticity of pro-
genitor cells and location-specific cellular programming 
will help to better understand the role of progenitor and 
stem cells in systemic fibrosis41. Indeed, delineating the 
disease process might be sufficient to progress therapy, 
especially in an era of targeted biological approaches.

Bidirectional research translation
Animal models have been useful to extending our 
knowledge of the pathophysiology of systemic sclerosis, 
but it is likely that optimal use of patient samples will 
have more potential to lead to bidirectional research 
translation184. The disease process and its similarity to 
the human pathology need to be validated in animal 
models. If these models are validated, they will become 
platforms for preclinical evaluation of novel treatments 
of specific complications such as PAH185. Thus, it is 
likely that as the understanding of disease biology in 
systemic sclerosis grows, substantial clinical develop-
ment will follow. Ultimately, the non-lethal burden of 
systemic sclerosis might gain increasing importance 
because patients will survive longer. In addition, dis-
ease management could be improved through use of 
targeted therapeutics that may differentially benefit 
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different aspects of the condition. It is encouraging 
that novel biological interventions are demonstrating 
treatment effect for skin fibrosis186.

Targeted disease-modifying therapy
Historically, major therapeutic advances in systemic 
sclerosis have arisen through the management of spe-
cific, organ-based complications. Acid-suppressive 
medication has transformed the impact and conse-
quences of severe gastro-oesophageal reflux disease. 
Targeted therapies for PAH have benefitted functional 
outcomes and survival, and routine use of ACE inhibi-
tors in scleroderma renal crisis means that this com-
plication is no longer almost always lethal187. Other 
organ-based treatment advances are likely, but the 

real challenge and opportunity are for targeted and 
logical disease-modifying therapy. As outlined above, 
better patient stratification, advances in biological 
understanding, availability of candidate therapeutics 
and improved clinical trial design make the prospect 
feasible, and the first tentative steps towards this have 
already been taken188. It seems more likely than not that 
at least one effective novel therapy will emerge in the 
next decade (FIG. 7). This, together with a better under-
standing of disease impact and risk stratification, will 
make systemic sclerosis much more manageable. The 
remaining challenge then will be a health-economical 
one, as treatments and longer survival are likely to 
increase the costs, which will need to be addressed by 
health-care systems and policy makers.
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